Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764868

RESUMO

As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.


Assuntos
Juglans , Humanos , Idoso , Juglans/química , Nozes/química , Dieta , Estresse Oxidativo , Peptídeos/farmacologia , Peptídeos/análise
2.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511135

RESUMO

A major active constituent of Moringa oleifera Lam. is 4-[(α-L-rhamnose oxy) benzyl] isothiocyanate (MITC). To broaden MITC's application and improve its biological activity, we synthesized a series of MITC quinazolinone derivatives and evaluated their anticancer activity. The anticancer effects and mechanisms of the compound with the most potent anticancer activity were investigated further. Among 16 MITC quinazolinone derivatives which were analyzed, MITC-12 significantly inhibited the growth of U251, A375, A431, HCT-116, HeLa, and MDA-MB-231 cells. MITC-12 significantly inhibited U251 cell proliferation in a time- and dose-dependent manner and decreased the number of EdU-positive cells, but was not toxic to normal human gastric mucosal cells (GES-1). Further, MITC-12 induced apoptosis of U251 cells, and increased caspase-3 expression levels and the Bax:Bcl-2 ratio. In addition, MITC-12 significantly decreased the proportion of U251 cells in the G1 phase and increased it in S and G2 phases. Transcriptome sequencing showed that MITC-12 had a significant regulatory effect on pathways regulating the cell cycle. Further, MITC-12 significantly decreased the expression levels of the cell cycle-related proteins CDK2, cyclinD1, and cyclinE, and increased those of cyclinA2, as well as the p-JNK:JNK ratio. These results indicate that MITC-12 inhibits U251 cell proliferation by inducing apoptosis and cell cycle arrest, activating JNK, and regulating cell cycle-associated proteins. MITC-12 has potential for use in the prevention and treatment of glioma.


Assuntos
Glioma , Moringa oleifera , Humanos , Pontos de Checagem do Ciclo Celular , Glioma/metabolismo , Proliferação de Células , Apoptose , Ciclo Celular , Proteínas de Ciclo Celular/farmacologia , Isotiocianatos/farmacologia , Linhagem Celular Tumoral
3.
Front Aging Neurosci ; 15: 1071391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923118

RESUMO

Background: Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose: The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods: Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results: The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aß and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion: The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.

4.
Front Immunol ; 13: 924178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911761

RESUMO

Ulcerative colitis is a chronic inflammatory bowel disease (IBD), but progress in exploring its pathogenesis and finding effective drugs for its prevention and treatment has stalled in recent years. The seeds of Moringa oleifera Lam. are rich in proteins known to have multiple physiological activities. In our earlier work, we had isolated and purified a peptide (MOP) having the sequence KETTTIVR, from M. oleifera seeds; however, its anti-inflammatory activity and mechanism in vivo were unclear. Here we used the dextran sulfate sodium (DSS)-induced colitis model to study the anti-inflammatory activity and mechanism of this MOP. Our results are the first to show that MOP can ameliorate the pathological phenotype, inflammation, and intestinal barrier disruption in mice with colitis. Furthermore, RNA sequencing revealed that MOP inhibits the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway activation. Next, by using 16s rRNA gene sequencing, we found that MOP can ameliorate DSS-induced gut microbiota dysbiosis. In addition, an untargeted metabolomics analysis suggested that MOP is able to modulate the level of lipid and amino acid metabolites in IBD-stricken mice. Altogether, these results indicate that MOP ameliorates colitis by remodeling intestinal mucosal barrier by inhibiting JAK-STAT pathway's activation and regulating gut microbiota and its metabolites, thus providing a basis for further processing and design of bioactive foods from M. oleifera seeds.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Moringa oleifera , Animais , Anti-Inflamatórios/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Doenças Inflamatórias Intestinais/metabolismo , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Moringa oleifera/metabolismo , RNA Ribossômico 16S , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
5.
Biomed Pharmacother ; 136: 111280, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485063

RESUMO

Ginseng has been widely applied in clinical practice, but the cultivation age cannot be ignored as it influences the quality of ginseng and its products. In this work, different cultivation ages of fresh ginseng (FG) from four to seven years were analysed by UPLC-Q-TOF-MS/MS. Principal component analysis and supervised orthogonal partial least squared discrimination analysis, which belong to the normal method of multivariate statistical analysis, were applied to discover the characteristic components of FG at different cultivation ages. The components of new type of red ginseng (NRG) derived from FG at different cultivation ages were compared by HPLC analysis. The pharmacological anti-inflammatory activity was evaluated by ELISA and qPCR. The result showed that the characteristic components of both 6- and 7-year-old ginseng were ginsenoside Rb1, mal-ginsenoside Rb1, ginsenoside Rc, mal-ginsenoside Rc, mal-ginsenoside Rb1 isomer, and mal-ginsenoside Rb2. Moreover, the characteristic components of both 4- and 5-year-old ginseng were ADP-glucose and 3-hydroxyhexanoyl CoA. In addition, 6-year-old NRG has higher rare ginsenosides than 4-year-old NRG, which possesses great anti-inflammatory activity in vitro. The results reveal the ginsenoside transformation law of NRG processing and suggest that the cultivation age of FG influences the content of ginsenosides in NRG. Therefore, 6-year-old ginseng is more suitable for red ginseng processing and clinical use.


Assuntos
Anti-Inflamatórios/farmacologia , Ginsenosídeos/farmacologia , Microglia/efeitos dos fármacos , Panax/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Ginsenosídeos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Análise dos Mínimos Quadrados , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Panax/metabolismo , Extratos Vegetais/isolamento & purificação , Análise de Componente Principal , Espectrometria de Massas em Tandem , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...